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Abstract  

This paper describes a fuzzy logic based architecture for real time sensor validation and fusion for 
vehicle following tasks for automated highways. Automated highways and more generally "smart 
vehicles" rely heavily on sensor data for a variety of control purposes. High sensor data fidelity is of 
prime concern because human life is at stake. However, sensor data are always uncertain to some extent 
due to noise and possible sensor failures. We address these issues by proposing to validate and fuse 
multiple sensor readings using a fuzzy time series prediction model, fuzzy validation gates, and a 
weighted average fusion scheme. The integration of these methods allows the assignment of degrees of 
confidence to each sensor reading. This is achieved through the use of validation gates which are areas 
in which the reading is expected to lie. They take into account the specific properties of each sensor as 
well as the physical limitations of the system considered. The placement of the validation gates in turn is 
dependent of the fuzzy time series prediction which uses fused past values and sensor readings as input. 
Examples from experiments performed for PATH (Partners for Automated Transportation Highways) 
California show that this method works successfully under a variety of operating conditions.  

Introduction  

Intelligent vehicle highway systems (IVHS) use information internal and external to the vehicle to 
activate responses appropriate for the given situation. The goal is to support the human operator in 
critical decision making situations or even eliminate the human operator altogether. Such systems are 
only desirable if they are able to perform at least as good as the human operator. They will rely heavily 
on sensor readings which measure internal quantities such as throttle angle, brake pressure, manifold 
flow, etc., and external quantities such as longitudinal and lateral distances to the next object, 
temperature, visibility, etc. The reality of sensor readings is that there is always some uncertainty 
involved due to noise, receptivity of the sensor to environmental conditions, possible failure, etc. To 
remedy this undesired situation, one can try to filter out the noise or use some kind of redundancy to 
back up the given sensor reading. Unfortunately, two (or more) sensor readings will never coincide. 
While this is not a big problem if they give readings in acceptable limits, it is a problem if the readings 
are far apart. In that case at least one sensor must be producing erronious readings, and means have to be 



used to find out which one is at fault. Generally, all sensor readings give incorrect readings to some 
extent. After the degree of uncertainty of each sensor has been established, this information must be 
used for evaluation of a better reading. The process of integrating information from several sensor 
readings is called sensor fusion. The standard approach to accomplish sensor fusion is to use 
probabilistic means. In order to simplify the computation, probabilistic approaches commonly assume 
zero mean, Gaussian distributions of noise. This assumption is often not always valid as our experiments 
have shown (Agogino, Goebel and Alag, 1995). Therefore, we propose to use fuzzy logic for sensor 
validation and sensor fusion because no assumption of a Gaussian distribution of the noise need be 
made. Furthermore, unlike many probabilistic approaches in which the variance of the system 
perturbation and the noise variables must be known in advance, no such assumptions about the variance 
are made for the fuzzy approach.  

Architecture  

The proposed architecture performs the tasks of sensor validation and sensor fusion. The architecture is 
depicted in figure 1. Input to this architecture are the raw sensor readings. Output is a corrected value. 
This value can be used for the machine level controller as well as for supervisory control tasks 
(Agogino, Alag, and Goebel, 1995). Additional information can be output about which sensor performed 
in which manner and whether there are indications for failure. A diagnostic module would utilize this 
information.  

  

Fig.1: Architecture for Sensor Validation and Sensor Fusion  

The Sensor Validation and Sensor Fusion modules are realized through a Fuzzy Exponential Weighted 
Moving Average (FEWMA) Time Series Predictor, a validation procedure using validation gates, and a 
weighted average fusion. The state equations of the system model used for the FEWMA are described 
by  

 
 
where w(k) describes the system perturbation  

v(k) represents the observation noise  

The standard EWMA predictor has the form  

If the parameter  is set to a fixed value the ratio to which new information from sensor readings is used 
to update the system state is fixed as well. This means that the predictor will usually lag behind the true 



state to some degree. On the other hand, outliers are filtered out and a relatively smooth predictor curve 
is obtained assuming  is large enough. To circumvent the lag, a more responsive predictor is desired 
which can be achieved through making  smaller. However, the predictor follows now more closely the 
true state but is much more receptive to noise. In many systems it is desirable to have the predictor filter 
out noise when the system is in steady state and in order to make it more receptive when it is in a 
transient state. This means that  has to be flexible. It should be large when the system is in a steady 
state and it should be small when the system is in a transient state (Khedkar and Keshav, 1992). To 
further overcome the lag in the predictor, the terms of old value and incoming sensor reading have to be 
de coupled. This can be achieved by replacing the term (1- ) by a . If  is large,  must be small and 
vice versa. However, the relationship between  and  is nonlinear. Therefore, the system will have a 
smaller gap between predictor and true value. The resulting FEWMA predictor has the form: 

 
 
where  

 and  are related to the system perturbation and the observation variances  
The basic fuzzy rules used for the FEWMA are: * IF  large THEN  small  

* IF  large THEN  small  

* IF change of readings small THEN  large  

* IF change of readings large THEN  large  

The reasoning behind the first two rules captures the notion of the EWMA to allow exponential decay of 
the residual. The third rule is motivated by the fact that if the system is steady, then the change of 
readings is due more to noise and less to changes of the system itself, therefore more weight should be 
given to the past history and less to the new reading which is likely corrupted by noise (Khedkar and 
Keshav, 1992). If, on the other hand, the system is in a transient state, then the change of readings will 
be due more to the change of the state and less due to noise. Therefore, more weight should be given to 
the incoming reading and less to the past history to allow good responsiveness and little lag. Design of 
the membership functions is of prime importance. We used parameterized representation of the 
membership functions (Jang, 1993) as follows:  
 
 
 
Learning of parameters is accomplished through machine learning using genetic algorithms, driven by 
data obtained experimentally in the real environment.  
 
All sensor values are assigned a confidence value. This confidence value depends on the specific sensor 
characteristics, the predicted value, and the physical limitations of the sensor value. The assignment 
takes place in a validation gate which is bound by the physically possible changes of the system. In the 
case of longitudinal sensors this means the limits are set by the change from the old value to what could 
be achieved by maximum acceleration of the follower car and the maximum deceleration of the lead car 
on the one side and maximum deceleration of the follower car and maximum acceleration of the lead car 
on the other side. Beyond these limits no sensor reading makes sense and it would be assigned a 
confidence of 0 if it falls outside this region. Inside the region, the maximum value of 1 will be assigned 
to readings which coincide with the predicted value. The curve between the maximum and the two 
minima is dependent on the sensor behavior. Generally, it is a non-symmetric curve which is wider 
around the maximum value if the sensor is known to have little variance and narrower if the sensor 
exhibits noisy behavior. The curves are flexible over the operating conditions which allows to capture 



the change in behavior of the sensor over its operating span. The validation gate is shown in fig. 2. 

 

 

 
 
Fig. 2: Validation gate for the assignment of confidence values  

The fusion is performed through a weighted average of confidence values and distance measured as  
where 
xf: fused value  

yi: measurements  

 confidence values  

Note that if all sensors lie on one side of the predicted value, the fused value will also be on the same 
side. This ensures that evidence from the sensors is closely followed yet discounted the further it gets 
away from the predicted value.  

The validation and fusion algorithm works in the following manner: Incoming sensor readings are 
validated using the validation gate and the old fused value. This fused value is then used for prediction 
which in turn is necessary to perform the validation of the next time step. The fused value is also used 
for the machine level controller as well as supervisory control tasks. The algorithm is displayed in fig. 3. 



  

Fig. 3: Algorithm for fuzzy sensor validation and fusion  

Experiments  

Data were taken from PATH vehicles equipped with three different type of longitudinal distance sensors 
(Agogino, Goebel, and Alag, 1995). These sensors were radar sensor, sonar sensor, and optical sensor. 
The vehicle performed several maneuvers such as join and split, i.e. reduction of distance and increase 
of the distance between the cars in a platoon. Fig. 4 shows the readings of the three sensors as well as 
the fused value. The radar sensor had little variance throughout the experiment but experienced "bumps" 
around 4.5m and 9m which has been attributed to a quantization error. The sonar sensor showed the 
smallest variance throughout its operating region but exhibited outliers which showed up above 4m and 
increased with distance between the follower vehicle and the lead vehicle. Above 8m no good readings 
were found. The optical sensor had the highest variance of all sensors which increased with growing 
distance between follower and lead vehicle but shower otherwise no adverse effects. The fused value 
filters out the spikes of the sonar sensor, the bumps of the radar sensor, and the noise of all sensors.  

  

Fig. 4: Open loop validation and fusion of three longitudinal sensors (radar, sonar, optical)  

While the fused value shown in fig. 4 was used in open loop fashion, fig. 6 shows the effect of feed back 



of the fused value to the machine level controller which effects the throttle angle. For this, simulation 
software release 1.0 from the Vehicle Dynamics lab of UC Berkeley was used. Fig. 5 shows the velocity 
and acceleration profile of the maneuver simulated. For comparison, Kalman filter and Probabilistic 
Data Association Filters (PDAF) were used for fusion as well (Alag, Goebel, and Agogino, 1995). Over 
a time period of 30 seconds, the spacing error was summed up. The sum squared error (SSE) for perfect 
information, i.e. no noise, was 0.6693. When non-Gaussian noise was introduced, the SSE was 
186.5875. A Kalman filter reduced the SSE to 1.9186, the PDAF to 1.3901, the fuzzy filter alone to 
0.8638, and the fuzzy fusion to 0.8454.  

  

  

Fig. 5: Velocity and acceleration profiles for simulated maneuver 



  

Fig.6: Error spacing of follower car for closed loop sensor validation and fusion  

Summary and Conclusion  

The proposed architecture for sensor validation and fusion provides a tool which conveniently deals 
with both Gaussian and non-Gaussian noise. Machine learning algorithms are used to modify the 
parameters over time in order to continuously update the system model. Computational expense is held 
at a minimum to allow for real time applications such as the dynamic environment of fast moving 
vehicles with short sampling intervals and high demand on sensor data fidelity.  

Acknowledgments  

The authors acknowledge the support by PATH California grants MOU-132 and MOU-157  

References  

Agogino, A., Goebel, K., and Alag, S., "Intelligent Sensor Validation and Sensor Fusion for Reliability 
and Safety Enhancement in Vehicle Control", MOU132, Final Report, ITS Research Report D95-36, 
California PATH, 1995.  

Agogino, A., Alag, S., and Goebel, K., "A Framework for Intelligent Sensor Validation, Sensor Fusion, 
and Supervisory Control of Automated Vehicles in IVHS", Intelligent Transportation: Serving the User 
through Deployment, Proceedings of the 1995 Annual Meeting of ITS America, pp. 77-87, 1995.  

Alag, S., Goebel, K., and Agogino, A., "A Methodology for Intelligent Sensor Validation and Fusion 
used in Tracking and Avoidance of Objects for Automated Vehicles", Proceedings of the ACC 1995 
Conference, Seattle, WA, 1995.  

Jang, J.-S.R., "ANFIS: Adaptive-Network-Based Fuzzy Inference System", IEEE Transactions on 
Systems, Man and Cybernetics, vol.23, (no.3):665-85, 1993. 



Khedkar, P., and Keshav, S., "Fuzzy Prediction of Time Series", Proceedings of the IEEE International 
Conference on Fuzzy Systems, San Diego, CA, USA, 8-12 March 1992. 


